Спин-спиновое взаимодействие - Definition. Was ist Спин-спиновое взаимодействие
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Спин-спиновое взаимодействие - definition

СОБСТВЕННЫЙ МОМЕНТ ИМПУЛЬСА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Спин (физика); Спиновое квантовое число
  • Четырёхтактный двигатель возвращается в исходное состояние при повороте коленчатого вала на 720°, что является неким аналогом полуцелого спина
  • Пример объекта, который требует поворота на 720° для возврата в начальное положение

Спин-спиновое взаимодействие      

взаимодействие между спиновыми магнитными моментами микрочастиц (см. Спин). Это взаимодействие является релятивистским эффектом (оно содержит множитель 1/с2, где с - Скорость света). Вследствие этого С.-с. в. мало по сравнению с электрическим взаимодействием частиц, обменным взаимодействием (См. Обменное взаимодействие), взаимодействием спинового магнитного момента с внешним полем и т. д. Тем не менее оно приводит к ряду важных эффектов в атомах, молекулах и твёрдых телах.

Взаимодействие спиновых магнитных моментов электронов и ядра даёт вклад в энергию атома, которая вследствие этого зависит от взаимной ориентации суммарного спина электронов и спина ядра. Это приводит к сверхтонкому расщеплению уровней энергии атомов и линий атомных спектров (см. Сверхтонкая структура). С.-с. в. электронов также даёт добавку к энергии атома. Однако оно не приводит к дополнительному расщеплению уровней энергии и обычно мало по сравнению со спин-орбитальным взаимодействием (См. Спин-орбитальное взаимодействие), определяющим в основном тонкую структуру (См. Тонкая структура) атомных спектров (см. Мультиплетность). В молекулах же мультиплетную структуру спектров в ряде случаев определяет именно С.-с. в. электронов (Σ-уровни; см. Молекулярные спектры).

В ферромагнетиках (См. Ферромагнетики) магнитное упорядочение обусловлено обменным взаимодействием атомных носителей магнитного момента. Менее существенно их магнитное взаимодействие, но оно наряду с действием электрического поля кристаллической решётки приводит к зависимости энергии кристалла от направления его намагниченности (к магнитной анизотропии (См. Магнитная анизотропия)). Хотя энергия магнитной анизотропии мала по сравнению с обменной энергией, она сказывается в существовании оси лёгкого намагничивания (См. Ось лёгкого намагничивания) в ферромагнетике и явления магнитострикции (См. Магнитострикция). С.-с. в. в ферромагнитном кристалле является также одним из механизмов релаксации, приводящим к конечной ширине резонансной линии в эффекте ферромагнитного резонанса (См. Ферромагнитный резонанс) (см. Релаксация магнитная).

Взаимодействие между спиновыми магнитными моментами электронов и ядер проявляется также в электронном парамагнитном резонансе (См. Электронный парамагнитный резонанс) (ЭПР) и ядерном магнитном резонансе (См. Ядерный магнитный резонанс) (ЯМР). Оно вызывает расщепление магнитных уровней энергии электрона во внешнем поле и обусловливает сверхтонкую структуру линий ЭПР. В металлах резонансная частота прецессии ядерных магнитных моментов при ЯМР сдвигается вследствие появления эффективного локального магнитного поля на ядре, созданного намагниченными внешним полем электронами проводимости (сдвиг Найта). С.-с. в. внутри систем электронов и ядер обусловливает в этих системах релаксационные процессы и даёт вклад в ширину резонансных линий ЭПР и ЯМР.

Лит.: Ландау Л. Д., Лифшиц Е. М., Теоретическая физика, 3 изд., т. 3, М., 1974; Вонсовский С. В., Магнетизм, М., 1971; Керрингтон А., Мак-Лечлан Э., Магнитный резонанс и его применение в химии, пер. с англ., М., 1970.

Л. Г. Асламазов.

СПИН         
а, м. физ.
Собственный механический момент количества движения элементарной частицы или атомного ядра, всегда присущий данному виду частиц, определяющий их свойства и обусловленный их квантовой природой.
Спин         
Спин (от , ) — собственный момент импульса элементарных частиц, имеющий как квантовую, так и классическую природу и тесно связанный с представлениями группы вращений и группы Лоренца (классические аспекты спина см. в книгах H.

Wikipedia

Спин

Спин (от англ. spin, букв. — «вращение, вращать(-ся)») — собственный момент импульса элементарных частиц, имеющий как квантовую, так и классическую природу и тесно связанный с представлениями группы вращений и группы Лоренца (классические аспекты спина см. в книгах H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968), Alexei Deriglazov, Classical Mechanics (Second Edition,  Springer 2017), Пенроуз и Риндлер, Спиноры и пространство-время). Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число (оно есть число, характеризующее представления группы вращений и группы Лоренца, то есть сколько в нём собственно квантовости и сколько неквантовости, сейчас неизвестно), которое обычно называют просто спином (одно из квантовых чисел). Спин свободной частицы измерить нельзя, так как для измерения требуется внешнее магнитное поле, а оно делает частицу несвободной.

В связи с этим говорят о целом или полуцелом спине частицы. Полуцелый спин фундаментальнее, так как "из него" можно построить целый спин, но обратное невозможно (см. книгу Пенроуза и Риндлера).

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике. Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы.

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы.

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином 0 {\displaystyle 0} описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются трёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются пятикомпонентной волновой функцией (тензор).

Was ist Спин-сп<font color="red">и</font>новое взаимод<font color="red">е</font>йствие - Definition